Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY CYBERSECURITY DATA SCIENCE
     ❯   

Pandas DataFrame mean() Method

❮ DataFrame Reference


Example

Return the average (mean) value for each column:

import pandas as pd

data = [[1, 1, 2], [6, 4, 2], [4, 2, 1], [4, 2, 3]]

df = pd.DataFrame(data)

print(df.mean())
Try it Yourself »

Definition and Usage

The mean() method returns a Series with the mean value of each column.

Mean, Median, and Mode:

  • Mean - The average value
  • Median - The mid point value
  • Mode - The most common value

By specifying the column axis (axis='columns'), the mean() method searches column-wise and returns the mean value for each row.


Syntax

dataframe.mean(axis, skipna, level, numeric_only, kwargs)

Parameters

The axis, skipna, level, numeric_only parameters are keyword arguments.

Parameter Value Description
axis 0
1
'index'
'columns'
Optional, Which axis to check, default 0.
skip_na True
False
Optional, default True. Set to False if the result should NOT skip NULL values
level Number
level name
Optional, default None. Specifies which level ( in a hierarchical multi index) to check along
numeric_only None
True
False
Optional. Specify whether to only check numeric values. Default None
kwargs   Optional, keyword arguments. These arguments has no effect, but could be accepted by a NumPy function

 Return Value

A Series with the mean values.

If the level argument is specified, this method will return a DataFrame object.

This function does NOT make changes to the original DataFrame object.


❮ DataFrame Reference