Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY CYBERSECURITY DATA SCIENCE
     ❯   

Pandas DataFrame astype() Method

❮ DataFrame Reference


Example

Return a new DataFrame where the data type of all columns has been set to 'int64':

import pandas as pd

data = {
  "Duration": [50, 40, 45],
  "Pulse": [109, 117, 110],
  "Calories": [409.1, 479.5, 340.8]
}

df = pd.DataFrame(data)

newdf = df.astype('int64')
Try it Yourself »

Definition and Usage

The astype() method returns a new DataFrame where the data types has been changed to the specified type.

You can cast the entire DataFrame to one specific data type, or you can use a Python Dictionary to specify a data type for each column, like this:

{
  'Duration': 'int64',
  'Pulse'   : 'float',
  'Calories': 'int64'
}


Syntax

dataframe.astype(dtype, copy, errors)

Parameters

The copy and errors parameters are keyword arguments.

Parameter Value Description
dtype data type, or a dictionary with data types for each column:
{
  'Duration': 'int64',
  'Pulse'   : 'float',
  'Calories': 'int64'
}
Required. Specifies the data type
copy  True|False Optional. Default True. Specifies whether to return a copy (True), or to do the changes in the original DataFrame (False).
errors  'raise'|'ignore' Optional. Default 'raise'. Specifies whether to ignore errors or raise an exception on error.

Return Value

a Pandas DataFrame with the changes set according to the specified dtype(s).


❮ DataFrame Reference