Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY CYBERSECURITY DATA SCIENCE
     ❯   

Pandas DataFrame apply() Method

❮ DataFrame Reference


Example

Return the sum of each row by applying a function:

import pandas as pd

def calc_sum(x):
return x.sum()

data = {
  "x": [50, 40, 30],
  "y": [300, 1112, 42]
}

df = pd.DataFrame(data)

x = df.apply(calc_sum)

print(x)
Try it Yourself »

Definition and Usage

The apply() method allows you to apply a function along one of the axis of the DataFrame, default 0, which is the index (row) axis.


Syntax

dataframe.apply(func, axis, raw, result_type, args, kwds)

Parameters

The axis, raw, result_type, and args parameters are keyword arguments.

Parameter Value Description
func   Required. A function to apply to the DataFrame.
axis 0
1
'index'
'columns'
Optional, Which axis to apply the function to. default 0.
raw True
False
Optional, default False. Set to true if the row/column should be passed as an ndarray object
result_type 'expand'
'reduce'
'broadcast'
None
Optional, default None. Specifies how the result will be returned
args a tuple Optional, arguments to send into the function
kwds keyword arguments Optional, keyword arguments to send into the function

Return Value

A DataFrame or a Series object, with the changes.

This function does NOT make changes to the original DataFrame object.


❮ DataFrame Reference